Allegro

ALLEGRO aims at designing and validating a novel end-to-end sliceable, reliable, and secure architecture for next-generation optical networks, achieving high transmission/switching capacity

About ALLEGRO ‘Agile ultra low energy secure networks’

ALLEGRO aims at designing and validating a novel end-to-end sliceable, reliable, and secure architecture for next-generation optical networks, achieving high transmission/switching capacity

  • with 10 Tb/s for optoelectronic devices and 1 Pbt/s for optical fiber systems
  • low power consumption/cost
  • with > 25% savings
  • and secure infrastructures and data transfers.

The architecture relies on key enabling innovations:

  1. smart, coherent transceivers exploiting multi-band & multi-fiber technologies for P2P and P2MP applications, based on e.g., high-speed plasmonic modulators/photodetectors and programmable silicon photonic integrated waveguide meshes;
  2. loss-less, energy-efficient transparent photonic integrated optical switches, eliminating OEO conversions, e.g., with on-chip amplification in the O-band for datacom applications;
  3. a consistent approach to security, in terms of functional/ protocol architectures and communications, further improving QKD systems, enabling optical channel co-existence and researching on quantum-resistant (post-quantum) cryptography, developing systems based on physically unclonable functions; and
  4. a scalable AI/ML assisted control and orchestration system, responsible for autonomous networking, dynamic and constrained service provisioning, function placement and resource allocation, leveraging devices increasing programmability and overall network softwarization.

      To achieve the target objectives and KPIs, ALLEGRO has defined a clear methodology ending in ambitious demonstrators. The consortium includes a good balance of industry and research/academia with know-how in complementary fields.

      The results of ALLEGRO will be disseminated in leading conferences, events, and high-impact journals. They will have a concrete and measurable economic and social impact, contributing towards achieving key European objectives, reinforcing European leadership and digital sovereignty in the ongoing digital and green transition.

      Project News

      Project NEWS: ALLEGRO Greedy Resource Allocation Mechanism

      As part of the #ALLEGRO project , we developed an intelligent Greedy Resource Allocation Mechanism for efficient microservice placement across edge/cloud infrastructure. 🌐⚙️ 🔍 What does it do?Our heuristic approach balances performance and resource efficiency by...

      Machine Learning Function Orchestrator (MLFO) in ALLEGRO

      The ALLEGRO project introduces the MLFO, a dedicated orchestrator for managing distributed AI/ML pipelines across the network. Unlike traditional intent-based systems focused on single network entities, MLFO enables a global, scalable, and reconfigurable AI/ML...

      AI/ML Agents in the ALLEGRO Project

      In the ALLEGRO approach, AI/ML agents are designed as intelligent software entities responsible for managing and optimizing specific services. These agents are built with a modular architecture to ensure agility, security, and seamless integration. 🔍 Key Components:...

      ALLEGRO Project: Transport Network Slicing for 5G & Beyond

      As 5G services evolve and diversify, network slicing emerges as a foundational technology—enabling transport networks to deliver customized, on-demand, and performance-assured services across multiple domains and layers. In the ALLEGRO architecture, Transport Network...